IDENTIFYING & ESTIMATING BEHIND THE METER PV CAPACITY ON A FEEDER USING MACHINE LEARNING

Objective

- Lack of precise data on behind the meter photovoltaic (PV) system capacity and output.
- Develop a machine learning model that, given a certain geographical location, can detect the amount of solar panel arrays and then estimate the yearly solar power generation.
- Meet the needs of urban planning and renewable energy sectors, and efficient electrical supply allocation and overall grid stability management.

Image Retrieval

Google Solar API

System Design and Requirements

System Design

Aerial

Images

- Satellite Image and Solar Information Retrieval
- Solar Panel Detection
- Solar Energy Estimation
- Roboflow for annotation
- Segment Anything Model for
- pseudo label generation

System Requirements

 Collection and annotation of over 2000 images Achieve 85% mAP50 for bounding

Scalable address processing.

Generalizable to U.S. addresses.

Fully automated end-to-end process.

Post-Processing

Calculation

Monthly Flux

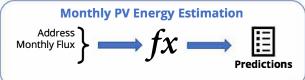
Calculation

Panel Area

boxes and 80% mAP50 for masks.

Solar Panel Detection

ultralytics


Conclusion Our system demonstrates the

- feasibility of using a visionbased algorithm to analyze residential solar panels on a large scale.
- System implementation follows intended design with some caveats.

Conclusion and Future Work

Limitations and Future Work

- Limited training image dataset Lack of fined-grained ground truth data to . validate our estimation
- Could analyze feeder data and account for other factors such as precipitation or soiling to improve PV energy estimation.
- Could utilize different APIs (pvlib, pvgis, pywatts)

Image Collection, Processing, and Annotation

Learned on 1656 train + 414 validation, 640x615 pixel images [3]. Sampled addresses from many urban counties across

Addresses

- Four 640x640 natches of one 1280x1280 pixels image.
 - USA to generate training and validation set.
 - eft: unannotated image with solar panels. Right: annotated image with solar panels using square bounding boxes [3].

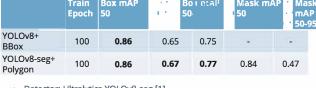
JSON

Solar Flux Map

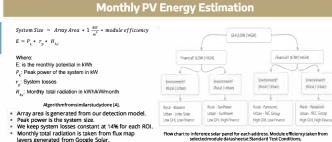
Building Mask

Aerial Image

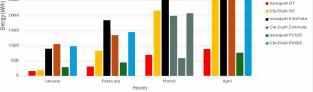
Meta Data


- Used Roboflow to host the dataset, train, run inferences, and annotate images.
- First set of custom dataset images were annotated using square bounding boxes. Collects solar flux (incident sunlight) map (left), RGB image (center), and can
- automatically do this for a grid of images (right).

References


[1] Ultralytics. (2023). YOLOVB: Real-Time Object Detection. <u>https://github.com/ultrahtics/ultra</u>

Sensing and Spatial Information Sciences, vol. XLV-MS-2021, pp. 119–125, Aug. 2021, doi: https://doi.org/10.5194/jsprs.archives.vliv.ms.2.021.119-2021 [5] European Commission, "RC Photovoltaic Geographical Information System (PVGIS) - European Commission," re/rc.ec.europa.eu, 2022. https://re.irc.ec.europa.eu/pvg_tools/en/



- Detector: Ultralytics YOLOv8-seg [1].
- Instance mask pseudo label generator: Segment Anything Model (SAM) [2].
- Post process detection results by filtering instances with building mask and calculate instance mask area.

Estimate to Ground Truth Comparison

ADVISERS: DANIEL KIRSCHEN, ANIL JAMPALA, DAVID THOMAS, MINGFEI CHEN

SPONSOR: PSC CONSULTING

Solar Panel Detection

YOLOV8

YOLOv8-Seg

Train Box mAP Bo r etal Mask mAP Mask